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Abstract
The basic reverse Monte Carlo algorithm, as applied primarily for the study
of disordered systems, is introduced, using an example of a new reverse
Monte Carlo computer code. RMC++ is a new implementation of the RMC
algorithm in C++. Its main purpose is to provide the community with a
fast, flexible and documented code for RMC simulations, compatible with the
rmca distribution. The source code, the documentation and the executable
files are made available through the Internet. The flexibility of the code is
exemplified by the implementation of a ‘molecular move’ step in the Metropolis
algorithm. This feature, as well as a performance comparison, is illustrated with
simulations performed for molecular liquids such as CCl4 and C2Cl4.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Reverse Monte Carlo (RMC) is a tool for structural modelling which makes it possible
to generate three-dimensional structural models, containing thousands of particles, that are
consistent (i.e., agree within errors) with experimental (primarily, diffraction) data. RMC
makes use of available experimental data in a direct, interactive and quantitative manner, via
‘modelling’ the measured data over their entire (useful) range; this is in contrast with an a
posteriori comparison with measured data (details of the modelling—or, in a way, ‘fitting’—
procedure are given below). The structural models (‘particle configurations’) provided by
the RMC procedure are consistent not only with all available experimental data but also with
constraints which reflect our knowledge about the system in question (such constraints are, for
example: density, particle sizes, molecular structure). The application of RMC does not require
interatomic potentials, and therefore the technique is completely general; the information
provided by the method, on the other hand, depends heavily on the type and quality of the
experimental data being modelled.
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The reverse Monte Carlo method has now been used for 15 years [1], and for a number of
applications ranging from liquids, glasses to investigations of disorder in crystals (see [2] for
a review). The RMC scheme can also be applied to the study of magnetic disorder, and may
possibly be adapted to tackle dynamics [3].

Although the recent review mentioned above [2] touches the most relevant areas of
applications, for an update, a couple of further examples may be mentioned here. Over the
past few years, interest in metallic glasses has been renewed: this is mainly due to the fact
that now, a number of such materials can be prepared as bulk materials. Following the early
papers on metallic glasses (see, e.g., [4–7]), no new RMC-related applications have come up
for quite a few years. Very recently, new studies on bulk metallic glasses have appeared [8];
it seems that a lot more will follow soon.

There has been a continuous interest in the microscopic structure of various chalcogenide
glasses. Amorphous selenium appears to be the ‘evergreen’ prototype of these materials [9, 10],
and Se and Te based amorphous alloys are also being looked at currently [11, 12].

Molecular liquids have been at the focus of our interest lately. Over the past five years,
simple systems like carbon disulfide [13], carbon tetrachloride and its XCl4 analogues [14]
have been considered by reverse Monte Carlo modelling, as well as the most notorious of
molecular liquids: water [15]. With the purpose-built features of the new computer code
(see below), partially (or even, fully) rigid molecules, like amino acids, will be much more
accessible.

Another type of systems where RMC modelling seems to be setting foot firmly nowadays
is colloids. After an early (standard) study on the structure of polymer latices [16], RMC-like
computational methods have been developing separately, with the aim of being able to consider
more and more general small-angle scattering signals [17–19].

At the core of most of these applications lies the computing program that performs the
simulations. For the ‘standard’ case of disordered materials, the Fortran rmca distribution1

has been available for about ten years. Its source code includes features made necessary
by the computer technology of the late 1980s, which are now obsolete (e.g. a specific
array implementation to minimize memory usage). Besides, the original code yielded later
modified versions that include new constraints (e.g. fixed neighbour constraints —FNC—
[20]); however, only the original code remains properly documented and easily accessible.
Consequently, the development of an updated, optimized RMC implementation was undertaken
in Budapest. The RMC algorithm will be introduced here using an example of the new code,
RMC++. The original list of specifications for the new software included clarity, portability,
flexibility, upgradability, inclusion of a documentation and compatibility with rmca. In the
following, the resulting code is briefly described. We particularly address specific issues
concerning the computation of calculated data and the relevance of RMC results.

The recent extensive review article of McGreevy [2] tackles most issues relevant to the
applications of reverse Monte Carlo modelling, and therefore only a few further examples
are appropriate here; these include molecular liquids and some ‘theoretical’ aspects of the
method. Instead of providing a multitude of examples, this work focuses on a somewhat
different approach to the numerical background of RMC, as well as on the specific features of
the new code.

2. The basic algorithm

On an abstract level, the structure modelling problem can be seen as a particular case of an
inverse problem: given some experimental data and a theoretical modelling relation, one has

1 Code and documentation available at www.studsvik.uu.se.
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to infer (and eventually to select) a model that is compatible with the data (within some defined
uncertainty). In the case of RMC, the relevant experimental data are overwhelmingly those of
diffraction measurements, although any experimental signal may be used that can be calculated
directly from particle positions.

Experimental diffraction data are assumed to be given in the form of the usual (static) total
structure factor (TSF) ST(Q). The model space can be defined as the set of possible partial
pair correlation functions (PPCFs) gαβ(r), with α and β defining different atom types. The
partial structure factors (PSFs) Sαβ are then defined by

Q[Sαβ(Q) − 1] = 4πρ

∫ ∞

0
r [gαβ(r) − 1] sin(Qr) dr (1)

where ρ is the atom number density of the system. These PSFs are weighted by the scattering
lengths b̄α, b̄β and the (molar) concentration cα , cβ of each atomic species to yield the TSF:

ST(Q) =
∑
αβ

cαcβ b̄αb̄β[Sαβ(Q) − 1]. (2)

Usual direct methods perform the inverse sine Fourier transform from the TSF to obtain the
PPCF. In the case of a polyatomic material, that requires isotopic substitution to separate each
contribution. One alternative to sine Fourier transform inversion is MCGR [21]—Monte Carlo
determination of g(r)—which samples the space of PPCFs until it finds a solution in agreement
with the experimental data.

RMC gets closer to the real physical system by defining a model (a configuration) as a set
of N virtual atoms put into a box at the density corresponding to that of the material under study
(see figure 1). Figure 2 shows the flowchart of the basic algorithm; in short (‘text format’), the
algorithm can be summarized as follows (for a more detailed description, see [1, 2]).

(i) Start with a simulation box of sidelength L, containing N particles at the correct density
(‘starting particle configuration’).

(ii) Calculate distance histograms for the partial PPCFs from the particle coordinates (see
section 3).

(iii) Calculate the total structure factor(s), via equations (1) and (2) (see section 4).
(iv) Determine χ2, the difference between model and experimental TSFs (χ2 is the sum of

squared differences between calculated and measured TSFs).
(v) Generate a new particle configuration by moving one particle at random.

(vi) Calculate χ2 for the new configuration.
(vii) If the new χ2 is smaller than previously, accept the move (the new configuration is saved);

if not then the move still may be accepted with probability exp[−�χ2]. If a move is
rejected, the old configuration is maintained.

(viii) Repeat from step (v).

As a result of the above procedure, χ2 will decrease until it reaches an ‘equilibrium value’.
Any final particle configuration will be consistent, within errors, with the experimental data
modelled, and any discrepancies between different final configurations cannot be discriminated
on the grounds of the data in input.

Note that pioneering applications of RMC-like procedures also existed [22]; their main
drawback was that they did not accept moves that increased χ2. This feature, combined with
inadequate computer power available at that time, prevented the widespread recognition of the
enormous power of such modelling techniques.

RMC is dubbed as an inverse method, because it only involves computations from model
space to data space, i.e. it never processes data. RMC works by repeatedly sampling the
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Figure 1. The structural modelling problem: direct methods of inversion operate a Fourier
transform of S(Q) diffraction data to get the PPCFs gαβ , and thus face problems regarding
limited Q-range information, underdetermination and instability. MCGR avoids these problems
by repeatedly sampling the space of PPCFs to find a solution. RMC goes one step further and uses
the space of atomic configurations as model space. Thus it ensures that the solutions are physically
correct (within the constraints applied).

configuration space in order to find a model that is compatible with the input data (see figure 1).
This is a Metropolis-type algorithm, i.e. a biased walk in the parameter space driven by the
agreement between calculated and real data. Different aspects of the algorithm itself have
been extensively described in the literature (see e.g. [23–26] and references therein). Purely
practical details encountered when trying to write a working RMC programme are on the other
hand seldom addressed.

3. From configuration to (radially averaged) pair correlation functions

A configuration is implemented as the list of coordinates of N atoms put in a virtual box with
periodical boundaries. This means that each atom can be seen at the centre of an L × L × L
cubic box, and thus interatomic distances up to

√
3l can be obtained, with l = L/2.

The PPCF gαβ(r) is interpreted as the ratio of probabilities

gαβ(r) = PMαβ(r, dr)

PHαβ(r, dr)
(3)

where PMαβ(r, dr) is the probability of finding one atom of type β at a distance between r
and r + dr of one atom of type α in the material; and PHαβ(r, dr) is the probability of finding
one atom of type β at a distance between r and r + dr of one atom of type α in an ideally



RMC++: a C++ implementation of RMC S5

constraints

not satisfied

loop until convergence

Accept the move Accept/reject the move with a probability
exp(-∆ χ2/2)

χ2 decreased by the move ?

compute corresponding
new  ‘virtual data’ and χ2

move ONE ATOM

compute corresponding ‘virtual data’ and χ2

start from a given configuration

check constraints:
• distances of closest approach
• fixed neighbour constraints

for possibly several
data sets including
g(r)’s, neutron data,

X-ray data and EXAFS

YES NO

• Parameter space: the positions of atoms of the material under study
       put in a ‘box’, with the required density

possibly include
coordination constraints

contribution to the
χ2

Figure 2. Flowchart of the ‘standard’ RMC algorithm.

homogeneous material. With this definition, the expected number of atoms of type β at a
distance between r and r + dr from one atom of type α is given by

nαβ(r) = 4πr2gαβ(r) dr ρβ (4)

where ρβ is the number density of β atoms in the material.
In RMC, the probabilities appearing in the definition (equation (3)) are estimated from

the counts and binning of distances in histograms. We must note that in general, within a well
defined context (summarized by the information I ), usual distributions provide the probability
of getting n counts given a probability parameter p, say Pr(n|p, I ). What we need here is to
go the other way round: we have (histogram) counts, and we want a value for p. This can be
done using Bayes’ theorem [27], and by assuming an a priori distribution for p, one gets a
posteriori distribution for p, Pr(p|n, I ). And finally, one has to choose a value for p from that
posterior distribution function. In extreme cases (probabilities close to 0 or 1), the assumptions
made during this process might play a non-negligible role. In ‘standard’ cases, however, the
usual choice of the ‘maximum likelihood’ value for p, i.e. the value that maximizes Pr(n|p, I )
for the known n, is appropriate.
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In the present case, this routine choice is adopted: given a distance interval [r, r + �r [,
the probability p of finding one interatomic distance in that range2 is estimated by the ratio

PM (r, dr) = number n of distances in the range [r, r + �r [

all N distances available
. (5)

This value maximizes the likelihood when the binomial distribution is considered for
Pr(n|p, N, I ). We must distinguish between different atom type pairs (α, β) to compute the
different partials, and therefore we have for each histogram bin, and for distinct and identical
atom types:

pαβ = nαβ

Nα Nβ

; pαα = 2nαα

Nα(Nα − 1)
(6)

where Nα and Nβ are the number of atoms of type α and β in the configuration, and nαβ (resp.
nαα) are the counts number in the histogram for different (resp. identical) atom types.

The second probability (for the ideally homogeneous material) in equation (3) reduces to
the ratio of volumes:

volume of the spherical shell [ri , ri+1[

total volume available
. (7)

Note that the volume of the spherical shell [ri , ri+1[ has to be modified if the radius goes
beyond the dimension l of the box (see the RMC++ manual3 for details). In the ‘standard use’
of RMC, distances larger than the box size l (i.e. ∼48% of all distances) are dropped, and the
normalizing factor (equation (7)) for the spherical shell [ri , ri+1[ reads

4/3π

8l3
[r3]ri+1

ri
. (8)

The important point to keep in mind in this process is that the gi values picked are estimates
of the PPCFs, and that the uncertainty over the chosen values depends on the number of
distances used to compute the estimates. Roughly speaking, the relative uncertainty on gi can
be estimated as δgi/gi ∼ 1/

√
ni . This point must be considered when choosing the histogram

bin size: too small a bin size would yield large statistical uncertainty and ‘noisy’ calculated
g(r)s. As usual, there is a tradeoff between the statistical precision over the estimation of gi

(which is the integral of gαβ(r) over the i th bin), and the resolution in r defined by the bin
width. Note that the number of atoms in a given bin at low r range is roughly proportional
to the number of atoms in the box, so that the eventual precision required puts a lower limit
on the system size. Depending on the level of detail demanded for the PPCF, it is possible
that this requirement supersedes the condition imposed by the computation of the integral in
equation (1) (see the condition in equation (11) below).

4. From g(r) to S(Q): the sine Fourier integral

Once the PPCFs gαβ are chosen, the PSFs Sαβ must be calculated via the sine Fourier integral
(equation (1)) approximated by

Sαβ(Q) − 1 = 4πρ

Q

∫ rmax

0
r [gαβ(r) − 1] sin(Qr) dr. (9)

This approximation is valid only if the box is large enough so that there is no structure beyond
rmax, i.e. gαβ(r) = 1, r � rmax. It must be noted that the lowest Q value for which the PSFs

2 We use a half-closed—rather than closed—interval to stick to the non-overlapping intervals defined in the actual
code implementation. The physical sense and mathematical calculations are not affected.
3 Software and documentation available from www.szfki.hu/∼nphys/.

www.szfki.hu/~nphys/
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must be computed also imposes a lower limit on the system size. Indeed we require that a full
period (2π) of the sine function is included in the integral, i.e. Qminrmax � 2π .

There are several possibilities to approximate equation (9) numerically, but since we start
from a discretized version of g(r) obtained from the histograms of distances, the so-called
rectangular method is the most appropriate, i.e.

Sαβ(Q) − 1 = 4πρ

Q

imax∑
i=0

(gαβ,i − 1)

∫ ri+1

ri

r sin(Qr) dr (10)

where a constant value gαβ,i for g on each histogram range [r1, ri+1[ is assumed. For this
process to be valid, the discretization step must be kept small with respect to the variations of
the integrand. In this case, the fastest variations are assumed to take place for the highest Q
value Qmax in the sine part of the integrand. One has to set a lower limit to the number η of
discretization points needed over one full period at Qmax, so that the �r bin width for r must
satisfy

�r � 2π

ηQmax
. (11)

A value of η not less than 5 is recommended.
Each integral in the RHS of 10 can be computed analytically. The PSFs must be obtained

for the Q j values where there are experimental data for comparison. Matrix elements U ji can
be defined as

U ji = 4π

Q j

[
sin(Q jr)

Q2
j

− r cos(Q jr)

Q j

]ri+1

ri

. (12)

The sine Fourier integral (equation (1)) is implemented as the application of the matrix U ji to
the ‘vector’ {gi}:

Sαβ(Q j ) − 1 = ρ
∑

i

U ji[gαβ,i − 1]. (13)

The matrix Ui j is initialized at the start of the programme (there is one matrix for each data
set). Finally, the total static structure factor (directly comparable with the measured data) is
computed by the weighted sum in equation (2).

Fast Fourier transform can be considered as an alternative to the process described above,
but it has its own requirements (e.g. regular binning) which makes it less flexible than the raw
Fourier integral approximation. Besides, the Fourier transform is not the most time-consuming
stage in the algorithm.

5. RMC++ implementation and optimization

A basic RMC flowchart appears in figure 2. The decomposition of the algorithm into elementary
tasks, involving defined pieces of data (histograms, partials, etc) is straightforward.

The chosen language for the implementation was C++. As an object-oriented language,
it lends itself naturally to this brick-by-brick decomposition and thus allows maximum clarity,
flexibility and upgradability. Another valuable feature during code development is that code
elements can be tested independently. Table 1 lists the main code pieces implemented as C++
classes in RMC++.

Elementary techniques have been used to optimize the code for computing speed. The
most time-consuming task in the algorithm is the calculation of interatomic distances (more
precisely, the computation of the distances to the moved atom). Optimization therefore
demands that these distances be computed only when necessary, and be computed quickly.
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Table 1. The main C++ classes in the RMC++ implementation.

Experimental data sets
Configuration
Run parameters
Coordination constraints
Average coordination constraints
Fixed neighbours constraints
Histograms set
Sine Fourier transform matrix
Move
Pair correlation functions
Calculated partial structure factors
Calculated data
χ2

Run history

The first requirement applies to the set of constraints which discard the move when they are
not satisfied, i.e. distances of closest approach, and FNCs (that mimic intermolecular links).
Obviously, the distances to the very few known neighbours of the moved atom must be checked
first, because they are the ones which are the most likely not to satisfy the constraints. This
is easily implemented for FNCs. A more general definition of a ‘neighbourhood’ of each
atom would be required to really perform the same ‘priority distance checks’ for all atoms,
for example to each atom could be attached the list of the 100 closest atoms4. Such a possible
development, which would imply extra memory cost, remains to be tried.

Computing distances from the moved atom to all the others has been optimized by carefully
implementing the arrays of positions for the atoms so that the transfer of data blocks from the
RAM to the cache memory is kept to a minimum.

6. Comparison to the existing RMCA distribution

The resulting code (RMC++) has been put on the testbench with different systems (e.g. H2O,
CCl4, Cl2) using the existing rmca and rmc fi programmes as references. The comparison
was made straightforward by the use of the same input formats for both codes.

As far as performance is concerned, RMC++ is about three times as fast as rmca (see
figure 3). Small additions improve the user’s comfort: for example, the evolution of the values
of the χ2 components as well as the different acceptance ratios is recorded.

We must note that since the algorithms used in both implementations are almost identical,
similar features such as rounding error effects occur in both implementations. It is important
to notice that small variations in the definition of the histograms (e.g. a shift of all bins by a
small distance δr ), or of the PPCFs (by using an alternative normalization for the histograms)
yield small variations to the calculated data. These changes, in turn, yield large variations of
the χ2 for the same configuration. Presumably, a specific choice for these arbitrary parameters
does not really affect the result of an RMC simulation, but it points out the lack of a proper
tool to compare configurations. This feature should also set limitations on the level of detail
that can be accepted as reliable for discussions. At present, however, there is no tool to assess
the uncertainty of RMC results.

4 It is even possible that only the new distances to such neighbouring atoms must be updated at each step, because
presumably they are the ones which are most likely to be responsible for the evolution of the PPCFs owing to the
move.
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χ2

Figure 3. Comparison between rmca and RMC++ results. These runs are based on CCl4 (10240
atoms system, one neutron diffraction data set, FNC applied). The χ2 curve indicates that both
programmes behave identically. Arrows point to the total number of generated moves during the
20 h runs. The two different RMC++ runs refer to different compilers used for producing the
executable. It can be seen that for this system RMC++ is more than three times faster than RMCA.

7. The molecular move option

RMC++ was designed mostly for molecular systems; this is why relevant features are discussed
here in more detail.

In ‘standard’ RMC, one step in the Metropolis random walk consists of the move of
one single atom. There are cases where the molecular geometry is an important part of a
priori knowledge that one wants to introduce in the structure modelling process. For a system
composed of rigid molecules, moving atoms one by one is likely to destroy the molecular
geometry, and the only alternative is to move the whole molecule or at least a whole rigid
group of atoms simultaneously. This possibility has been implemented, in combination with
the FNCs, which define the molecules.

To illustrate the flexibility of RMC++, the only corresponding significant change required
in the programme is the redefinition of the implementation of the ‘move’ process. Obviously,
any such move must be purpose-made for a given system,so that some code writing is necessary.
The moves can include rotation around a preferential or random rotation axis, translations in
preferential or random directions, constraints on the flatness or the shape of the molecule, as
well as intramolecular atomic moves. The RMC++ website provides several examples of the
corresponding code parts for H2O, CCl4, C2Cl4, CS2 and H2O.

The ‘molecular’ option has been tested for these systems. Obviously, it really makes sense
for nearly rigid molecules. For CCl4 for example (or for H2O), there is no significant change
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Figure 4. RMC results for CCl4 modelled from neutron data [14]: (a) C–C PPCF, (b) C–Cl PPCF,
(c) Cl–Cl PPCF, (d) calculated versus experimental data: thick continuous curve, ‘molecular’
RMC run; thick dotted curve, ‘standard’ RMC; thin dashed curve, ‘hard-sphere’ (no data used)
simulations; circles, experimental data. For such a system whose geometry can be well defined
using FNCs, there is almost no difference between the ‘molecular’ and the ‘standard’ RMC results.
Differences in intermolecular peak widths are due to the use of different FNCs. Notice that the
only visible information brought by the data appears on the Cl–Cl partial.

in the resulting configurations (see figure 4). Tests were also conducted for the flat system
C2Cl4 (see figure 5) for which there is little space to move whole molecules at the considered
density. Consequently, the configuration evolves quite slowly. Perhaps more importantly, the
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Figure 5. Using the ‘molecular’ version of RMC++ to model C2Cl4 from neutron data [14]. In
addition to the intramolecular distances peaks (A to E), the Cl–Cl PPCF shows an intermolecular
peak (F) at the distance of closest approach used. Two runs were performed with cutoffs set to
2.2 Å (dotted curve) and 2.6 Å (continuous curve). The corresponding peaks indicate that Cl atoms
get artificially as close as allowed by the RMC constraints.

Figure 6. Experimental data (dotted curve) versus calculated data (continuous curve) resulting
from an RMC simulation using the ‘molecular’ move. The quality of agreement with experiment is
poor by usual RMC standards. One has to keep in mind, however, the balance between algorithmic
constraints such as FNCs or the moving scheme, and the goodness of fit is an adjustable parameter
of RMC.

fit to the measured data is not entirely satisfying by usual RMC standards (see figure 6). The
Cl–Cl PPCFs shows one artificial intermolecular peak indicating that molecules get as close as
the distances of closest approach allow (2.2 or 2.6 Å in the present example). This constraint
gives the molecule the shape of four large balls placed at the corners of a rectangle, and creates
a ‘well’ between the neighbouring Cl atoms. The algorithm finds difficulties in moving Cl
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atoms trapped in this well, and the corresponding peak in the Cl–Cl PPCF is a quite stable
feature, although it is hardly physically acceptable. Further studies are necessary in order to
assess the real usefulness of this option, and to find the adequate rules of thumb to conduct the
simulations.

Once again this illustrates that RMC cannot be used as a ‘black box’ and that results must
always be scrutinized on physics and chemistry grounds. The introduction of the ‘custom’
move option in the RMC algorithm requires some initial tests in order to empirically find the
good run parameters, with the usual tradeoff between move amplitude, distances of closest
approach and the ability of the configuration to evolve.

8. Conclusion

The reverse Monte Carlo structural modelling technique, as applicable for the study of the
microscopic structure of disordered materials (liquids and amorphous systems), has been
introduced.

We have developed a complete self-consistent C++ implementation of the RMC algorithm.
The code has been optimized for speed of execution and extensively tested. Compared to the
existing rmca distribution (with which it is compatible,using the same input and output format),
RMC++ appears to be about three times faster. It also includes additional new options, such as
the possibility to move whole molecules simultaneously. The programme is fully documented,
and is intended to serve as a backbone for possible future developments (e.g. application to
parallel computing, adaptation to peculiar systems, inclusion of dynamics,. . .). The source
code, the executables, and the documentation, as well as examples, are freely available to the
community via the web server of the SzFKI (see footnote 3).
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